自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

YDOOK

欢迎访问个人网站:www.ydook.com,维度分享,畅享天码。

  • 博客(37)
  • 论坛 (1)
  • 收藏
  • 关注

原创 YDOOK: Sanic: server app 参数配置 configure web app 参数配置教程

YDOOK: Sanic: server app 参数配置 configure web app 参数配置教程1. 关键点 Key:使用:NewAttribute = app.configure. / app.configure[ ] 直接配置:可以使用两种模式进行配置:app.configure.NewAttribute = NewAttribute_Value_Nameapp.configure['NewAttribute'] = NewAttribute_Value_Name2.

2021-01-29 15:40:22 31 1

原创 YDOOK:Sanic: Sanic.get_app 注册库注册表检索访问 app

YDOOK:Sanic: Sanic.get_app 注册库注册表检索访问 app1. 官方定义:2. 翻译:申请注册表实例化Sanic实例时,可以稍后在Sanic应用程序注册表中检索该实例。例如,这在您需要从无法以其他方式访问的位置访问Sanic实例时很有用。3. 代码验证:from sanic import Sanicfrom sanic.response import jsonapp = Sanic("ydook1")@app.route("/")async de

2021-01-29 10:58:22 49

原创 YDOOK:Sanic: 基础教程2:Sanic 安装教程

YDOOK:Sanic: 基础教程2:Sanic 安装教程1. 使用 pip3 安装:pip3 install sanic2. 如果需要安装纯版本的 Sanic,也就是使用bash安装,安装时不带uvloop或ujson,则需要添加去参数指令一起:SANIC_NO_UVLOOP=true SANIC_NO_UJSON=true pip3 install --no-binary :all: sanic3. 使用 conda-forge 安装:conda config --add chann

2021-01-29 10:02:07 36

原创 YDOOK:Sanic:Sanic 支持什么版本的 Python?

YDOOK:Sanic:Sanic 支持什么版本的 Python?1. 最好使用 Python 3.6 版本以上:2. 因为 Sanic 使用了 Python3.5 中的 async/await 进行编程。

2021-01-29 09:41:44 37

原创 YDOOK:Sanic: Sanic 基础入门实例 基础教程 1

YDOOK:Sanic: Sanic 基础入门实例 基础教程 11. 官方基础入门实例:Python 代码:from sanic import Sanicfrom sanic.response import jsonapp = Sanic("hello_example")@app.route("/")async def test(request): return json({"hello ydook!": "world of you!"})if __name__ == "__m

2021-01-29 09:36:13 45

原创 YDOOK: STM32: 波特率的定义 波特率计算 波特率是什么?

YDOOK: STM32: 波特率的定义 波特率计算 波特率是什么?1. 波特率是什么?1_1. 在电子通信领域,使用波特(Baud)代表调制速率;1_2. 波特率指的是有效数据讯号被调制载波的速率,即单位时间内载波调制状态变化的次数;1_3. 波特率表示每秒钟传送的码元符号的个数,它是对符号传输速率的一种度量;1_4. 波特率用单位时间内载波调制状态改变的次数来表示,1波特即指每秒传输1个符号。1_5. 波特(Baud,单位符号:Bd)这一单位是以法国电讯工程师埃米尔·博多(英文名字:Émil

2021-01-26 11:40:18 60

原创 YDOOK:STM32:STM中文参考手册 USART 通用同步异步收发器 原理框图详解

YDOOK:STM32:STM中文参考手册 USART 通用同步异步收发器 原理框图详解1. 整体图:2. IrDA SDR 编解码模块:3. 读写操作:发送与接收数据寄存器:4. CR1 2 3 与 SCLK:5. 硬件数据流控制器: nRTS 与 nCTS:6. 发送器 接收器 与中断控制器:7. 传统波特率产生器与中断控制:8. 框图上半部:9. 框图下半部:...

2021-01-26 10:36:49 52

原创 YDOOK:STM32: STM32F101 系列系统架构 互联型产品

YDOOK:STM32: STM32F101 系列系统架构 互联型产品1. STMF101 互联型产品的主系统架构也是主要包括两类:a. 驱动单元:五个;b. 被动单元:三个.2. 五个驱动单元:a. Cortex-M3 内核 DCode总线(D-bus), 系统总线(S-bus);b. 通用DMA1和通用DMA2;c. 以太网 DMA 。3. 三个被动单元:a. 内部 SRAM;b. 内部闪存存储器;c. AHB到APB的桥(AHB2APBx)(N.B.: AHB2APBx

2021-01-25 14:41:01 61

原创 YDOOK:STM32: STM32F101 系列系统架构 小容量中容量与大容量产品

YDOOK:STM32: STM32F101 系列系统架构 小容量中容量与大容量产品1. 主系统架构主要由两部分构成:1_1: 四个驱动单元;1_2: 四个被动单元。2. 四个驱动单元:a. Cortex-M3内核 DCode 总线(Dbus);b. 系统总线(S-bus).3. 四个被动单元:a. 内部 SRAM;b. 内部闪存存储器;c. FSMC;d. AHB到APB的桥(AHB2APBx)(N.B.: AHB2APBx 桥连接着所有的APB设备。)4. STMF103

2021-01-25 14:26:00 48

原创 YDOOK: STM32: STM 数据开发手册的 小容量与中容量与大容量 产品与互联型产品的定义

YDOOK: STM32: STM 数据开发手册的 小容量与中容量与大容量 产品与互联型产品的定义1. 小容量产品:指的是: 闪存存储器容量在16K至32K字节之间的STM32F101xx、 STM32F102xx和STM32F103xx微控制器。2. 中容量产品:指的是: 闪存存储器容量在64K至128K字节之间的STM32F101xx、 STM32F102xx 和STM32F103xx微控制器。3. 大容量产品:指的是: 闪存存储器容量在256K至512K字节之间的STM32F101xx和S

2021-01-25 12:58:51 42

原创 YDOOK: STM32:STM32系列芯片产品的命名规则 命名方法

YDOOK: STM32:STM32系列芯片产品的命名规则 命名方法

2021-01-25 11:22:23 61

原创 YDOOK:STM32: STMF101 系列各类存储容量数据手册下载教程方法

YDOOK:STM32: STMF101 系列各类存储容量数据手册下载1. 小容量STM32F101xx 系列:https://www.st.com/resource/en/datasheet/cd00210837.pdf2. 中容量STM32F101xx 系列:https://www.st.com/resource/en/datasheet/cd00161561.pdf3. 大容量STM32F101xx 系列:http://www.st.com/stonline/products/li

2021-01-25 11:10:43 36

原创 YDOOK:STM32: STM32CubeMx: 基本入门教程1

YDOOK:STM32: STM32CubeMx: 基本入门教程11. 官网地址汇总:1_1. STM32CubeMXhttps://www.stm32cube.com1_2. STM32Cube initialization code generator https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools

2021-01-25 09:47:29 50

原创 YDOOK :STM32 : 什么是波特率?波特率Baudrate 的定义

YDOOK :STM32 : 什么是波特率?波特率Baudrate 的定义定义:在电子通信领域中,波特(Baud)即调制速率。波特率指的是:有效数据信号调制成载波信号的速率,也就是单位时间内的载波调制状态变化的次数或频率。波特率表示每秒钟传送的码元符号的个数,它是对符号传输速率的一种度量。波特率越高,每秒传输的码元符号的个数越多。波特率用单位时间内载波调制状态改变的次数来表示。1波特即指每秒传输1个符号。波特(Baud,单位符号:Bd)这一单位是以法国电讯工程师埃米尔·博多(英语:Émile

2021-01-21 10:16:15 66

原创 YDOOK :STM32 : stm官方网站 官方芯片手册下载方法

YDOOK :STM32 : stm官方网站 官方芯片手册下载方法1. 登录官方网站:STM32 中国网:https://www.stmcu.com.cn/STM32 国际网:https://www.st.com/content/st_com/en.html2. 进入STM 中文网的:[ 设计资源 ] >> [ 芯片文档 ]:选择对应的项目文件,点击进入下载:此处以 STM32F101XX系列 为例:3. 直接点击下载即可。4. 注意:若还没有注册账

2021-01-18 11:26:03 88

原创 YDOOK AI : Pytorch :使用 tensor.ones() tensor.ones_like() 生成定义 全一数组 全1数组

YDOOK AI : Pytorch :使用 tensor.ones() tensor.ones_like() 生成定义 全一数组 全1数组1_1 tensor.ones() 函数:torch._C._VariableFunctions @overload def ones(*size: int, out: Optional[Tensor] = None, dtype: Optional[dtype] = None, layout: layout =

2021-01-11 16:07:18 127

原创 YDOOK AI : Pytorch :使用 tensor.zeros() tensor.zeros_like() 生成定义 全零数组 全0数组

YDOOK AI : Pytorch :使用 tensor.zeros() tensor.zeros_like() 生成定义 全零数组 全0数组1. tensor.zeros() 函数:torch._C._VariableFunctions @overload def zeros(*size: int, out: Optional[Tensor] = None, dtype: Optional[dtype] = None, layout: l

2021-01-11 15:54:09 167

原创 YDOOK AI :The NVIDIA driver on your system is too old (found version 10010). Please update your GPU

RuntimeError: The NVIDIA driver on your system is too old (found version 10010). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to

2021-01-11 15:49:13 295

原创 YDOOK AI : Pytorch : pytorch常用的张量生成与张量定义函数 tensor 生成与定义函数方法

YDOOK AI : Pytorch : pytorch常用的张量生成与张量定义函数 tensor 生成与定义函数方法1. 源代码展示:import torcha = [[1, 2, 3], [4, 5, 6]]print('a = ', a)# YDOOK JYLin : 普通的数组不能使用 tensor.dytpe 获取数据类型,需要使用 type(valuable) 获取print('type(a) = ', type(a))print()t1 = torch.tensor(a)

2021-01-11 14:59:06 38 1

原创 YDOOK AI : Pytorch: 使用 tensor.dim() 获取张量的数据维度 张量数组有多少个括号

YDOOK AI : Pytorch: 使用 tensor.dim() 获取张量的数据结构1. 源代码:import torcha = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])print('a = ', a)print('a.dtype = ', a.dtype)print()print('format a = {}'.format(a))print('format a.size() = {}'.format

2021-01-11 14:18:30 206

原创 YDOOK AI : Pytorch:使用 tensor.size() 获取张量的数据结构

YDOOK AI : Pytorch:使用 tensor.size() 获取张量的数据结构1. 源代码:import torcha = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])print('a = ', a)print('a.dtype = ', a.dtype)print()print('format a = {}'.format(a))print('format a.size() = {}'.format

2021-01-11 14:13:58 277

原创 YDOOK AI : Pytorch :获取张量变量的数据类型 tensor.dtype 属性

YDOOK AI : Pytorch :获取张量变量的数据类型 tensor.dtype 属性data type = tensor.dtype1. 源代码展示:import torcha = torch.tensor([1, 2, 3])print(a.dtype)输出:torch.int64

2021-01-11 13:46:43 117

原创 YDOOK AI : Pytorch : tensor 与 numpy 的 ndarray 相互转化 pytorch 张量与 numpy 数组之间转化

YDOOK AI : Pytorch : tensor 与 numpy 的 ndarray 相互转化 pytorch 张量与 numpy 数组之间转化转换方法:1. tensor => ndarray : tensor.numpy()2. ndarray => tensor : torch.from_numpy(ndarray)

2021-01-11 13:18:31 82

原创 YDOOK AI : Pytorch : tensor 张量数据类型转化 改变变量的数据类型 type()

YDOOK AI : Pytorch : tensor 张量数据类型转化 改变变量的数据类型 type()方法:使用 tensor. type(new valuable type)源代码:import torch# YDOOK JY Linprint(torch.__version__)a = torch.tensor([1, 2, 3])print('a = ', a)print('type(a) = ', type(a))a1 = a.type(torch.float64)pr

2021-01-11 12:47:35 136

原创 YDOOK : Anaconda : 添加国内镜像源方法 详细教程全收录

YDOOK : Anaconda : 添加国内镜像源方法 详细教程全收录1. 输入: conda config --show :查看当前 conda 属性配置:conda config --show输出:# YDOOK JY Lin(base) PS C:\Users\ADMIN> conda config --showadd_anaconda_token: Trueadd_pip_as_python_dependency: Trueaggressive_update_package

2021-01-11 10:03:26 192 1

原创 YDOOK AI :Pytorch : pytorch tensor 基本数据类型 分类总结 常用数据类型

YDOOK AI :Pytorch : pytorch tensor 基本数据类型 分类总结 常用数据类型常用数据类型:1. 32 位浮点型 : torch.float322. 64 位浮点型 : torch.float643. 32 位整型: torch.int324. 64 位整型: torch.int645. 16 位整型: torch.int166. 8 位整型: torch.int8代码展示:import torchimport sys# YDOOK JYLin: 默认的

2021-01-09 18:41:47 45

原创 YDOOK AI :Pytorch:生成 全1 tensor数组 pytorch 生成定义 全1张量数组

YDOOK AI :Pytorch:生成 全1 tensor数组 pytorch 生成定义 全1张量数组方法:torch.tensor.ones(维度结构)源代码:import torcha1 = torch.ones(0)a2 = torch.ones(1)a3 = torch.ones(1, 1)a4 = torch.ones(2, 3)a5 = torch.ones(2, 3, 5)print('a1 = ', a1)print('a2 = ', a2)print('a3 =

2021-01-09 17:01:43 470

原创 YDOOK:Pytorch : AI : torch.tensor.size() 与 torch.tensor.shape 的区别

YDOOK:Pytorch : AI : torch.tensor.size() 与 torch.tensor.shape 的区别区别:1. torch.tensor.size() 可用通过 :torch.tensor.size(具体的某一子张量矩阵下标) :来获取对应的具体的某一子张量矩阵的维度结构;2. torch.tensor.shape 不可用通过 :torch.tensor.shape (具体的某一子张量矩阵下标) :来获取对应的具体的某一子张量矩阵的维度结构,但是可以通过:torch

2021-01-09 16:56:26 379

原创 YDOOK :Pytorch 生成 全0 tensor数组 pytorch生成定义全零张量数组

YDOOK :Pytorch 生成 全0 tensor数组 pytorch生成定义全零张量数组使用 :torch.zero(shape)源码展示:import torcha1 = torch.zeros(0)a2 = torch.zeros(1)a3 = torch.zeros(1, 1)a4 = torch.zeros(2, 3)a5 = torch.zeros(2, 3, 5)print('a1 = ', a1)print('a2 = ', a2)print('a3 = ',

2021-01-09 16:38:59 789

原创 YDOOK :Pytorch : 生成随机 tensor Pytorch 生成随机张量矩阵

YDOOK :Pytorch : 生成随机 tensor Pytorch 生成随机张量矩阵使用: torch.rand (shape)源代码:import torcha = torch.rand(3, 3)print('a = ', a)print('type(a) = ', type(a))print()b = torch.rand(3)print('b = ', b)print('type(b) = ', type(b))print()c = torch.rand(0, 3

2021-01-09 14:18:10 214

原创 YDOOK : Pytorch : 线性回归 实用案例加源代码教程 基本入门1

YDOOK : Pytorch : 线性回归实用案例加源代码教程 基本入门11. 使用 Anaconda :2. 使用 Pycharm :3. 使用的 X-Y 二维数据集:.CSV 格式 :X,Y1,0.1232,0.2363,0.4574,0.4185,0.3866,0.6897,0.8128,0.8639,0.93310,0.9994. AI 源代码:import torchfrom torch import nnimport pandas as pd

2021-01-09 14:04:47 34 1

原创 YDOOK : Pycharm : ‘main‘ is not allowed to run in parallel. Would you like to stop the running one?

YDOOK : Pycharm : ‘main’ is not allowed to run in parallel. Would you like to stop the running one?问题,如下所示,在使用 Pycharm 的时候有时候会出现:‘main’ is not allowed to run in parallel. Would you like to stop the running one?key to solute:解决办法:1. 点击主菜单上的 [ Run ] :

2021-01-09 13:46:34 481

原创 YDOOK : pytorch 获取当前版本的 怎样获取 pytorch 当前版本号

YDOOK : pytorch 获取当前版本的 怎样获取 pytorch 当前版本号import torchprint(torch.__version__)输出:1.6.0Process finished with exit code 0

2021-01-08 23:34:09 102

原创 YDOOK :Pycharm 专业版下载安装 :官网直接下载安装 详细教程

YDOOK :Pycharm 专业版下载安装 :官网直接下载安装 详细教程1. 点击下面的链接直接进入,Pycharm 的官网下载界面:https://www.jetbrains.com/pycharm/download/#section=windows或者点击下面的链接, 进入 Pycharm 的官网再进行下载:https://www.jetbrains.com/pycharm/2. 国内由于中文版网站的原因,对 Pycharm 专业版的下载都是通过下面链接下载:https://down

2021-01-06 15:57:10 204 1

原创 YDOOK : Anaconda : 全库完全全面更新到最新版 更新详细教程

YDOOK : Anaconda : 全库完全全面更新到最新版 更新详细教程1. 首先,打开安装 Anaconda 时附带的 [Anaconda Prompt]:2. 输入:conda update conda先将 conda 更新到最新版本2. 再输入:conda update anconda将 anconda 更新到最新版本3. 更新中过程展示:4. 更新结束后,输入:[conda update conda] 与 [conda update anaconda] :检

2021-01-06 10:55:30 83

原创 YDOOK : Pytroch : 下载安装 详细安装教程 AI库 人工智能库 深度学习库

YDOOK : Pytroch :详细安装教程 AI库 人工智能库 深度学习库1. 首先,点击进入 Pytorch 的官网:https://pytorch.org/2. 然后,点击进入主菜单栏中的 [Get Started]:3. 在活动页卡中选择需要安装的模式:4. 阅读安装提示:START LOCALLYSelect your preferences and run the install command. Stable represents the most current

2021-01-06 10:29:30 104

原创 YDOOK:Anaconda :下载安装教程 详细下载安装步骤 :Python 最强大的科学库

YDOOK:Anaconda :下载安装教程 详细下载安装步骤 :Python 最强大的科学库1. 首先,进入 Anconda 的官网:https://www.anaconda.com/2. 然后,鼠标移动至主菜单栏中的 [Products]3. 然后,选择点击 [Individual Edition] 即 个人版(开源)即可:4. 点击 [Download]:5. 然后选择对应的版本,点击进入下载即可:...

2021-01-06 09:38:59 49

空空如也

# 开源推荐 YWeb golang web 服务器软件框架

发表于 2019-08-30 最后回复 2019-08-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除